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Abstract— In recent years, imitation-based driving planners
have reported considerable success. However, due to the absence
of a standardized benchmark, the effectiveness of various
designs remains unclear. The newly released nuPlan addresses
this issue by offering a large-scale real-world dataset and a
standardized closed-loop benchmark for equitable comparisons.
Utilizing this platform, we conduct a comprehensive study
on two fundamental yet underexplored aspects of imitation-
based planners: the essential features for ego planning and the
effective data augmentation techniques to reduce compounding
errors. Furthermore, we highlight an imitation gap that has
been overlooked by current learning systems. Finally, integrat-
ing our findings, we propose a strong baseline model—PlanTF.
Our results demonstrate that a well-designed, purely imitation-
based planner can achieve highly competitive performance
compared to state-of-the-art methods involving hand-crafted
rules and exhibit superior generalization capabilities in long-
tail cases. Our models and benchmarks are publicly available.
Project website https://jchengai.github.io/planTF.

I. INTRODUCTION

Learning-based planners are considered a potentially scal-
able solution for autonomous driving, supplanting traditional
rule-based planners [1]–[3]. This has sparked significant
research interest in recent years. In particular, imitation-based
planners [4]–[12] are reported to achieve notable success
in simulations and real-world scenarios. Nevertheless, these
planners are predominantly trained and evaluated in diverse
custom conditions (e.g. varying datasets, metrics, and simu-
lation setups) owing to the absence of a standardized bench-
mark. Consequently, it becomes challenging to compare and
summarize effective design choices for constructing practical
learning-based systems.

Recently, the release of the large-scale nuPlan [13] dataset,
alongside a standardized simulation benchmark, has provided
a new opportunity for advancing learned motion planners.
Enabled by this fresh benchmark, we conduct in-depth inves-
tigations on several common and critical yet not fully studied
design choices of the learning-based planner, aiming to pro-
vide constructive suggestions for future research. This paper
concentrates on two overarching and fundamental facets of
the imitation-based planner: the requisite ego features for
planning and the efficacious techniques of data augmentation.

The majority of imitation-based planning models [5]–
[11] follow the success of prediction models and inherently
incorporate the past trajectory of the autonomous vehicle
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(AV) as an input feature, though imitation learning (IL) has
frequently been noted for its tendency to acquire shortcuts
from historical observations [4], [14]–[16]. Our research
reaffirms that the past motion of the AV leads to significant
closed-loop performance degradation. The planner achieves
enhanced performance by solely utilizing the AV’s present
state. Surprisingly, it attains better closed-loop performance
purely using the AV’s current pose (position and heading).
This implies that additional kinematic attributes typically
deemed crucial for planning, such as velocity, acceleration,
and steering, lead to a performance decline. To gain deeper
insights into this phenomenon, we perform a sensitivity anal-
ysis to assess the impact of the AV’s states on the resulting
trajectory. Our experiments reveal that the planner can learn
to exploit shortcuts from its kinematic states, even when
past motion data is absent. To mitigate this challenge, we
introduced a straightforward yet highly effective attention-
based state dropout encoder, enabling the planner that utilize
kinematic states to achieve optimal overall performance.

Imitation learning is also known to have compounding
errors [17]. Perturbation-based augmentations [4]–[6] are a
commonly employed strategy to instruct the planner on re-
covering from deviations. We conduct comprehensive exper-
iments exploring various augmentation techniques, including
history perturbation, state perturbation, and future correction.
Additionally, we demonstrate the indispensability of proper
normalization for the effectiveness of augmentation. Further-
more, we identify an ignored imitation gap within current
learning frameworks and illustrate its potential impact.

Finally, by combining our findings, we provide a pure
learning-based baseline model that demonstrates strong per-
formance against state-of-the-art competitors on our stan-
dardized nuPlan benchmark. Our contributions are summa-
rized as follows:

1) We perform an in-depth investigation on necessary
features for ego planning, yielding counter-intuitive
results contrary to mainstream practices. Furthermore,
we introduced an effective attention-based state dropout
encoder that attains the highest overall performance.

2) We conducted a comprehensive array of experiments
involving various augmentation techniques, thereby elu-
cidating an effective strategy to mitigate compounding
errors. Additionally, we identified an overlooked imita-
tion gap in current learning frameworks.

3) By combining our findings, we provide an open base-
line model with strong performance. All our code,
benchmarks, and models will be publicly released, as
a reference for future research.
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II. RELATED WORK

Imitation-based planners are highly favored among
learning-based planners due to their ease of convergence and
typical scalability with data. They can be categorized into
two distinct groups based on their input types:

1) End-to-end. End-to-end (E2E) methods [18]–[29] di-
rectly produce future trajectories using raw sensor inputs.
Leveraging the closed-loop CARLA benchmark [30] and
the collaborative efforts of the open-source community, E2E
methods have achieved remarkable advancements within a
short span of time: evolving from initial basic CNN-based
approaches (LBC [23], CILRS [22]) to encompass multi-
modal fusion (Transfuser [26], NEAT [25], MMFN [27],
Interfuser [26], ThinkTwice [29]), as well as incorporating
integrated perception and planning strategies (LAV [24], ST-
P3 [19], VAD [21]). However, due to limitations posed by the
simulated environment, these methods typically function at
low vehicle speeds, and the behavior of the simulated traffic
agents lacks realism and diversity. Emerging and intriguing
research, such as data-driven traffic simulation [31], [32] and
realistic sensor emulation [33], [34], holds the potential to
mitigate these issues.

2) Mid-to-mid. These approaches [4], [6]–[12], [35], [36]
utilize post-perception outcomes as input and can directly
learn from recorded real-world data. Chauffernet [4] intro-
duces the synthesis of perturbed trajectories to mitigate co-
variate shift, a practice that becomes common in subsequent
studies. [5] further augment the training data with on-policy
rollouts. Several works have demonstrated the capability to
operate real vehicles (SafetyNet [6], UrbanDriver [7], Safe-
tyPathNet [9]). Many include a post-optimizer (DIPP [11],
GameFormer [10], hotplan [35], pegasus [37]) to enhance
the planner’s robustness. All the abovementioned methods
except hotplan use AV’s history motion. Our study focuses
on this category and provides an in-depth investigation of
several critical design choices based on standardized data
and benchmarks.

Beyond imitation. Another line of research aims to over-
come the inherent limitations [14]–[16] of pure imitation
learning (IL), such as utilizing environmental losses [4], [5],
integrating IL with reinforcement learning [38]–[40], and
incorporating adversarial training, also known as closed-loop
training [41]–[43]. Our work shows that the pure IL-based
planner has not reached its limit and can be significantly
improved with appropriate design.

III. RETHINK IMITAION-BASED PLANNER

We consider the task of urban navigation employing a
learned planner, trained by imitating the expert trajectory
from the dataset. At each planning iteration, the planner
receives various inputs, such as tracking data of surrounding
objects up to a 2-second historical window, the current and
past kinematic states of the ego vehicle, information about
traffic lights, high-definition (HD) maps, speed limits, and
the designated route. The planner is tasked with generating
a trajectory for the subsequent 8 seconds. It is essential to
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Fig. 1. A brief overview of our baseline model. Agents, map, and
ego features are separately encoded and then concatenated, which are
subsequently processed by a stack of transformer encoder layers. The
baseline model jointly predicts traffic agents and plans for ego vehicle at
the scene level.

note that, unless otherwise stated, we employ the unaltered
trajectory output from the planner in this paper. We intention-
ally avoid incorporating performance-enhancing techniques,
such as rule-based emergency stops or post-optimization, to
assess the planner’s inherent performance.

nuPlan [13] is a large-scale closed-loop ML-based planning
benchmark for autonomous vehicles. The dataset encom-
passes 1300 hours of recorded driving data collected from
four urban centers, segmented into 75 scenario types using
automated labeling tools.

Simulation. We use nuPlan’s closed-loop simulator as our
simulation environment. Each simulation entails a 15-second
rollout at a rate of 10 Hz. It employs an LQR controller for
trajectory tracking, while the control commands are utilized
to update the state of the autonomous vehicle through an in-
ternal kinematic bicycle model. The behavior of background
traffic varies based on the simulation mode, which can be
non-reactive (log-replay) or reactive.

Metrics. We employ the official evaluation metrics provided
by nuPlan, which include the open-loop score (OLS), non-
reactive closed-loop score (NR-CLS), and reactive closed-
loop score (R-CLS). R-CLS and NR-CLS share identical
calculation methodologies, differing only in that R-CLS
incorporates background traffic control via an Intelligent
Driver Model (IDM) [44] during simulations. The closed-
loop score is a comprehensive composite score, achieved
through a weighted combination of factors such as traffic rule
adherence, human driving resemblance, vehicle dynamics,
goal attainment, and other metrics specific to the scenario.
The score scales from 0 to 100. For a detailed description
and calculation of the metrics, please refer to [45].

Baseline. As a baseline, we have adapted the motion-
forecasting backbone model from our prior work [46] to
address the planning task. Figure 1 provides a concise
overview of the baseline model. Despite its simplicity, the
architecture primarily comprises multiple Transformer en-
coders [47], demonstrating significant modeling capacity. We
direct interested readers to the code base for details.

Benchmark. For all experiments, we standardize the data
split for training and evaluation. For the training phase,
we utilize all 75 scenario types in the nuPlan training set,
limiting the total number of scenarios to 1M frames. For the



Models Test14-random Test14-hard

Input feature Variants OLS NR-CLS R-CLS OLS NR-CLS R-CLS

w/ history
shared encoder 90.20 56.50 56.28 88.25 48.60 51.32
seperate encoder 90.28 61.02 59.85 86.77 51.98 49.34

w/o history

state3 (x, y, yaw) 81.13 85.99 79.38 71.43 68.44 63.14
state4 (+vel.) 86.42 81.32 75.75 82.30 68.15 62.51
staet5 (+acc.) 87.71 81.76 74.51 84.54 68.67 54.91
state6 (+steer) 88.45 83.32 77.52 85.93 65.15 55.99

TABLE I. Results of different input features. For models with history input, “shared” and “separate” encoders indicate whether both the agent and ego
vehicles utilize a shared history encoder or distinct ones. For models without history input, + refers to the inclusion of an additional state variable compared
to the preceding model in the table. Higher values indicate better performance for all metrics, with the best metric highlighted in bold.

evaluation phase, we employ 14 scenario types specified by
the nuPlan Planning Challenge, each comprising 20 scenar-
ios. We examine two scenario selection schemes: (1) Test14-
random: scenarios are randomly sampled from each type
and fixed after selection, and (2) Test14-hard: in order to
investigate the planner’s performance on long-tail scenarios,
we execute 100 scenarios of each type using a state-of-
the-art rule-based planner (PDM-Closed [48]), subsequently
selecting the 20 least-performing scenarios of each type.
Example scenarios can be found on the project page. As
the online leaderboard submission is closed, all evaluations
are conducted on the nuPlan public test set.

A. Input feature makes a difference

This section aims to address the following questions:
(1) Is historical motion data essential for planning? (2) If
not, do all current states of autonomous vehicles contribute
to improving the planner’s performance? To address these
inquiries, we conducted an investigation involving two sets
of variants derived from our baseline model. The results on
Test14-random and Test14-hard benchmarks are presented
in Table I. Among the two historical variants, one shares
its history encoder with other traffic agents, while the other
employs a distinct history encoder for the ego vehicle’s past
motion. In the case of state-only models, we scrutinized
several pivotal state variables essential for conventional plan-
ners, encompassing vehicle pose, velocity, acceleration, and
steering angle. Based on the experimental results, we have
the following findings:

History is not necessary. While models incorporating histor-
ical motion data exhibit superior off-policy evaluation perfor-
mance (OLS), they manifest significantly poorer performance
in closed-loop metrics compared to state-based models. This
phenomenon may attributed to the well-established “copycat”
problem [16] or learning shortcuts [49], wherein the planner
relies on extrapolation from historical data without a compre-
hensive grasp of the underlying causal factors. Furthermore,
the advantage in open-loop performance of historical models
diminishes rapidly as the number of states increases in state-
only models. Therefore, we conclude that history motions
are not necessary for planning models.

(a)

(b)

(c)

(d)

w/o SDE

w/ SDE

Fig. 2. The left side shows the planning trajectory of the state6 model by
adjusting AV’s steering angle from 0.15 to 0.5 rad. The right side illustrates
the magnitude of the gradient concerning the trajectory endpoint’s position
in relation to the AV’s kinematic states.
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Fig. 3. Illustration of the attention-based state dropout encoder.

Shortcut learning in kinematic states. Kinematic states,
such as velocity and acceleration, serve as vital initial bound-
ary conditions for ensuring safety and comfort in trajectory
planning. Nevertheless, we are surprised to find that the
state3 model, which exclusively relies on the autonomous
vehicle’s (AV) pose (comprising position and heading), sig-
nificantly outperforms other models incorporating kinematic
states in terms of CLS metrics. To gain deeper insights into
this phenomenon, we study a left-turn case of the state6
model. As depicted in Figure 2a, the model generates an
undesired off-road trajectory when changing the steering



Test14-random Test14-hard

SDE OLS NR-CLS R-CLS OLS NR-CLS R-CLS

staet3 - 81.13 85.99 79.38 71.43 68.44 63.14

state5
✗ 87.71 81.76 74.51 84.54 68.67 54.91
✓ 88.80 (+1.09) 86.73 (+4.97) 75.75 (+1.24) 84.29 (-0.25) 71.28 (+2.61) 61.88 (+6.97)

state6
✗ 88.55 83.19 74.79 85.89 67.57 58.99
✓ 87.07 (-1.48) 86.48 (+3.29) 80.59 (+5.80) 83.32 (-2.57) 72.68 (+5.11) 61.70 (+2.71)

TABLE II. Experimental results of the state dropout encoder (SDE) on Test14-random and Test14-hard benchmark. Models with SDE gain significant
improvements on CLS while maintaining high performance on OLS.

angle from 0.15 (blue) to 0.5 (red) rad. We hypothesize the
model still learns false correlation from the kinematics even
without the present of the past observation.

State dropout encoder. To confront our assumption, we
propose an attention-based state dropout encoder (SDE), as
shown in Figure 3. Each state variable undergoes individual
embedding through a linear layer before being combined
with positional encoding. A learnable query aggregates state
embeddings through a cross-attention module. During train-
ing, each embedded state (except position and heading) token
will be dropped with a certain probability. The encoder
compels the model to unveil the root causes of behaviors
by imposing partial constraints on its access to auxiliary
information. Meanwhile, the model can enhance its planning
capabilities when kinematic attributes are accessible. We
implement the state dropout encoder in the state5 and state6
models, and the results are depicted in Table II. The results
indicate that the utilization of SDE significantly enhances the
closed-loop performance of the models. Importantly, when
compared to state3, state5 and state6 models augmented with
SDE exhibit not only improved closed-loop score but also
substantially higher open-loop score, providing compelling
evidence for the efficacy of SDE. We point out that state3
model is fundamentally ambiguous as it loses all kinematic
information (supported by its poor OLS performance). Figure
2(a)(b) displays the comparative planning results of state6
model, while Figure 2(c)(d) presents comparative results for
the magnitude of the gradient of the endpoint’s position
(XT , YT ) w.r.t. the initial kinematic states s0. The results
demonstrate that the model employing SDE is less sensitive
to variations in kinematic states, resulting in more resilient
planning outcomes.

B. Data augmentation and normalization

Data augmentation is a common practice for IL-based
models to learn how to recover from deviations. In this
section, we conduct comprehensive experiments on different
data augmentation techniques, aiming to explore effective
strategies to mitigate compounding errors. Different aug-
mentation strategies are displayed in Figure 4. In Figure
4(a), an example driving scenario is depicted, with all
coordinates normalized relative to the autonomous vehicle’s
center. In Figure 4(b), randomly sampled noise (perturbation)

(a) (b) (c) (d)

Fig. 4. (a) The original scenario. (b) Random noise is added to the
AV’s current state and history motion is smoothed. (c) The coordinates of
the scenario are re-normalized based on the perturbed position of the AV.
(d) A corrected future trajectory is generated using constrained nonlinear
optimization.

P RN FC OLS NR-CLS R-CLS

history
✗ ✗ ✗ 88.99 65.84 65.58
✓ ✓ ✓ 89.94 65.14 66.03

state3

✗ ✗ ✗ 78.92 71.86 70.87
✓ ✗ ✗ 80.85 74.28 71.69
✓ ✓ ✗ 81.13 85.99 79.38
✓ ✓ ✓ 79.28 81.35 76.60

state5

✗ ✗ ✗ 88.44 80.67 74.50
✓ ✗ ✗ 89.20 79.85 72.43
✓ ✓ ✗ 87.71 81.76 74.51
✓ ✓ ✓ 86.43 82.10 74.71

state6
+SDE

✗ ✗ ✗ 88.33 77.28 74.10
✓ ✗ ✗ 87.71 77.70 75.18
✓ ✓ ✗ 87.07 86.48 80.59
✓ ✓ ✓ 85.50 82.95 76.09

TABLE III. Results of different augmentation and normalization com-
binations on Test14-random benchmark. P: Perturbation; RN: Re-
Normalization; FC: Future Correction.

is added to the AV’s current state, and its history states are
smoothed accordingly. In Figure 4(c), it is demonstrated that
the scenario’s coordinates are re-normalized with respect to
the autonomous vehicle’s center after perturbation. Figure
4(d) showcases the generation of a rectified future trajectory
through nonlinear optimization. Essentially, both strategies
depicted in Figure 4(b) and 4(d) serve the common objective
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Fig. 5. Illustration of the imitation gap and the proposed RL adapter.

Test14-random Test14-hard

Log-replay + NR-CLS R-CLS NR-CLS R-CLS

Perfect tracking 96.63 77.38 91.61 71.34

LQR 94.03 75.86 85.96 68.80
RL Adapter 96.3 77.13 91.65 71.62

TABLE IV. Exprimental results of the log-replay planner (perfect imitation)
with different trackers on Test14-random and Test14-hard benchmarks. LQR
is the default tracker used by the nuPlan benchmark and the RL adapter is
our proposed method to address the imitation gap.

of guiding the vehicle back to the expert trajectory.
Table III displays the outcomes of experiments conducted

with various augmentation strategies on four model variants.
Based on these results, the following findings emerge: (1)
In the case of the history and state5 models, none of the
data augmentations exhibit substantial enhancements. We
postulate that the primary challenge faced by these two
models is the issue of causal confusion, i.e. extrapolation
from either historical or kinematic states. (2) For state3 and
state6+SDE models, perturbation is of great importance, but
only works with proper normalization. For example, state3
model’s NR-CLS score boosts from 71.86 to 85.99 with
perturbation and re-normalization, which is much higher than
solely using perturbation (74.28). This implies it is important
to keep the data distribution close between training and
testing. (3) Providing a corrected guiding future trajectory
does not serve a positive effect. One possible reason is
that the manually generated trajectory does not align with
the expert’s trajectory distribution. Directly using the expert
trajectory as supervision is a more effective choice as it keeps
the original distribution, and small deviations can be easily
fixed by the tracker.

C. The hidden imitation gap

The imitation gap. Within the most popular imitation learn-
ing frameworks, models imitate the logged expert’s footprints
from the dataset. We argue that this learning framework gives

Reward Term Expression Weight

Position Tracking e−15||pxy−p∗
xy|| 1.0

Action ||u||2 -0.01
Action Rate ||u̇||2 -0.1
Lon. Acc. limit 1(v̇ > 2.4) -1
Jerk limit 1(||v̈|| > 4.0) -1
Yaw rate 1(||θ̇|| > 0.95) -0.5

TABLE V. The reward terms and expression of the RL adapter. Action u

contains acceleration and steering rate. v and θ refers to the longitudinal
and heading angle of the AV.

rise to a concealed gap in imitation, potentially leading to
notable performance degradation. As illustrated in Figure
5, the recorded trajectory, commonly known as the expert
trajectory, serves as the ground truth during the training of
the imitation-based planner. The generated imitated trajectory
is subsequently processed by the downstream tracker and the
underlying system dynamics, yielding the final trajectory of
the AV. Nevertheless, owing to the lack of knowledge about
the tracker and dynamics during training, the actual trajectory
may substantially deviate from the recorded trajectory, even
when imitation is flawless. This assertion finds support in
the experimental findings presented in Table IV. Notably,
the NR-CLS of the Log-replay + LQR method on Test14-
hard exhibits a significant decrease of 5.65 in comparison to
perfect tracking.

RL Adapter. One possible solution is to directly imitate
the control command rather than the trajectory points. Nev-
ertheless, this approach is heavily reliant on the specific
vehicle model, making it less generalizable and interpretable
than the trajectory-based method. An alternative approach
involves incorporating a differentiable kinematic model into
the trajectory decoder [5], [51]. However, the kinematic
model is often oversimplified to ensure differentiability. To
tackle this challenge, we introduce a reinforcement learning-
based trajectory adapter (RL Adapter) designed to bridge
this gap. The RL Adapter transforms the imitated trajectory
into the relevant control commands while accounting for the
underlying dynamics. The benefits are two-folds. First, it
can adapt to various vehicle models without retraining the
planner. Second, it imposes no constraints on the vehicle
model and remains compatible with non-differentiable vehi-
cle models (e.g. high-fidelity real vehicle dynamics model).
The training process of the adapter is displayed in Figure
5 and the rewards are shown in Table V. We use PPO [52]
for policy optimization and the training finishes in 80K steps
with a learning rate of 1e-3. As depicted in Table IV, the RL
Adapter performs similarly to perfect tracking, highlighting
its capacity to bridge the imitation gap. We notice that it can
be integrated into the training process of the planner and
leave this as future work.

IV. COMPARISON TO STATE OF THE ART

Implementation details. Integrating our findings, we pro-
pose a fully learning-based baseline planning model called



Planners Test14-random Test14-hard

Type Method OLS NR-CLS R-CLS OLS NR-CLS R-CLS Time(ms)

Expert Log-replay 100.0 94.03 75.86 100.0 85.96 68.80 -

Rule-based
IDM [44] 34.15 70.39 72.42 20.07 56.16 62.26 32
PDM-Closed [48] 46.32 90.05 91.64 26.43 65.07 75.18 140

Hybrid† GameFormer [10] 79.35 80.80 79.31 75.27 66.59 68.83 443
PDM-Hybrid [48] 82.21 90.20 91.56 73.81 65.95 75.79 152

Learning-based

RasterModel [13] 62.93 69.66 67.54 52.4 49.47 52.16 82
UrbanDriver [7] 82.44 63.27 61.02 76.9 51.54 49.07 124
GC-PGP [50] 77.33 55.99 51.39 73.78 43.22 39.63 160
PDM-Open [48] 84.14 52.80 57.23 79.06 33.51 35.83 101
PlanTF (Ours) 87.07 86.48 80.59 83.32 72.68 61.7 155

TABLE VI. Comparison with state-of-the-arts. The runtime includes feature extraction and model inference based on Python code.
† indicates these methods’ final output trajectory relies on rule-based strategies or post-optimization.

Planning Transformer (PlanTF). Specifically, we employ the
state6 model, incorporating a state attention dropout encoder
with a dropout rate of 0.75. During training, we apply state
perturbation with a probability of 0.5. The model is trained
using a batch size of 128 and a weight decay of 1e-4 for 25
epochs. The initial learning rate is set to 1e-3, decaying to
zero in a cosine manner.

Methods. We compare PlanTF’s performance with several
state-of-the-art planners. (1) RasterModel is a CNN-based
planner provided in [13]. (2) UrbanDriver [7] is a vector-
ized planner based on PointNet-based polyline encoders and
Transformer. Here we use its open-loop re-implementation
and history perturbation is employed during training. (3)
GameFormer [10] is a DETR-like interactive prediction
and planning framework based on the level-k game, which
incorporates a post-optimizer to generate the final trajectory.
(4) PDM* [48] is the winning solution of the 2023 nuPlan
Planning Challenge. PDM-Closed is a purely rule-based
approach that ensembles the IDM [44] with different hyper-
parameters. PDM-Hybrid is a variant of PDM-closed that
adds an offset predictor to improve its open-loop prediction
performance. PDM-Open is the pure learning component
without the IDM-based planner. Results are reproduced using
their publicly available code and trained on our standard 1M
data split.

Results. Table VI presents comparative results for the
Test14-random and Test14-hard benchmarks. First, the pro-
posed PlanTF significantly outperforms all other pure
imitation-based methods across all metrics, particularly in
terms of closed-loop performance. It is also the only
learning-based method that surpasses the widely recognized
IDM, highlighting the importance of proper design in IL.
Second, when compared to rule-based and hybrid methods,
PlanTF delivers outstanding OLS while maintaining highly
competitive CLS, without the need for any tricky hand-
crafted rules or strategies. Notably, our approach achieves the
highest NR-CLS on the Test14-hard benchmark, indicating

that although rule-based methods perform well in ordinary
scenarios (Test14-random), they struggle to generalize in
long-tail situations (Test14-hard). In contrast, PlanTF demon-
strates stronger generalization capabilities.

V. CONCLUSION

In this study, we systematically examine several crucial
design aspects of imitation-based planners by utilizing the
standardized nuPlan benchmark. Our findings reveal that
catastrophic shortcut learning generally occurs for input
features, such as historical motions and single-frame kine-
matic states. This leads to the unexpected outcome that
planning solely based on the AV’s current position results
in superior closed-loop performance. To mitigate this is-
sue, we introduce a straightforward attention-based state
dropout encoder (SDE) that effectively addresses the shortcut
learning problem. With the implementation of SDE, the
state6 model achieves the best overall performance. Data
augmentation is another significant factor in imitation-based
planners. Our results demonstrate that perturbation is vital
for reducing compounding errors, but only effective with
appropriate feature normalization. Furthermore, we observe
that the original expert trajectory remains a reliable training
ground truth, even when subjected to perturbation. In ad-
dition to these findings, we identify a neglected imitation
gap caused by the model’s lack of awareness of the un-
derlying system dynamics, which considerably impacts the
planner’s performance. To rectify this issue, we propose a
reinforcement learning-based adapter. By incorporating our
findings, the proposed purely learning-based baseline model,
PlanTF, demonstrates impressive performance compared to
state-of-the-art approaches and is on par with methods that
employ intricate rule-based strategies or post-optimization.
This highlights the importance of proper design choices for
imitation learning-based planners.

Limitation and future work. Despite pushing the bound-
aries of pure imitation-based planners, our method is con-
strained by the fundamental mismatch between open-loop



training and closed-loop testing. Incorporating closed-loop
information and system dynamics into the training process
constitutes our future research direction.

APPENDIX

Additional results on Val14 benchmark. We present the
comparative results (Table. VII) on the Val14 [48] bench-
mark. Val14 contains 1180 scenarios from 14 scenario types.

Method OLS NR-CLS R-CLS

Log-replay 100 94 80
IDM [44] 38 77 76
GC-PGP [50] 82 57 54
PlanCNN [13] 64 73 72
PDM-Hybrid [48] 84 93 92

PlanTF (Ours) 89.18 84.83 76.78

TABLE VII. Comparision to SOTAs on the Val14 benchmark. The results
of other methods are taken from [48].

Ablation on the state dropout rate. Table VIII shows the
ablation study on different dropout rate the of state6+SDE
model.

Model dropout OLS NR-CLS R-CLS

state6

- 88.33 77.28 74.10
0.25 89.11 81.70 78.44
0.50 89.12 83.71 77.52
0.75 87.07 86.48 80.59

TABLE VIII. Ablation study on the state dropout rate of the SDE.
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