
1

Efficient Global Navigational Planning in 3D
Structures based on Point Cloud Tomography

Bowen Yang1, Jie Cheng1, Bohuan Xue1, Graduate Student Member, IEEE,
Jianhao Jiao1,2, Member, IEEE, and Ming Liu3, Senior Member, IEEE

Abstract—Navigation in complex 3D scenarios requires appro-
priate environment representation for efficient scene understand-
ing and trajectory generation. We propose a highly efficient and
extensible global navigation framework based on a tomographic
understanding of the environment to navigate ground robots
in multi-layer structures. Our approach generates tomogram
slices using the point cloud map to encode the geometric
structure as ground and ceiling elevations. Then it evaluates the
scene traversability considering the robot’s motion capabilities.
Both the tomogram construction and the scene evaluation are
accelerated through parallel computation. Our approach further
alleviates the trajectory generation complexity compared with
planning in 3D spaces directly. It generates 3D trajectories
by searching through multiple tomogram slices and separately
adjusts the robot height to avoid overhangs. We evaluate our
framework in various simulation scenarios and further test it in
the real world on a quadrupedal robot. Our approach reduces
the scene evaluation time by 3 orders of magnitude and improves
the path planning speed by 3 times compared with existing
approaches, demonstrating highly efficient global navigation in
various complex 3D environments. The code is available at:
https://github.com/byangw/PCT planner.

Index Terms—Localization, mapping & planning, Unmanned
autonomous systems, Applications (robotics).

I. INTRODUCTION

NAVIGATING ground robots in 3D environments is es-
sential for a wide range of autonomous applications.

However, it’s still challenging to efficiently evaluate the multi-
layer scenarios with complex terrain conditions and spatial
structures, where a proper environmental representation would
assist to improve the scene evaluation speed.

Point clouds and meshes can represent detailed 3D struc-
tures and are applied in robot navigation problems [1], [2],
while their irregular data structures may bring difficulties to
scene understanding. Voxels discretize the space into struc-
tured 3D grids for the convenience of construction and map
processing, which are widely adopted to navigate UAVs [3],
[4]. However, it’s usually difficult to achieve high mapping ef-
ficiency while maintaining the capabilities to represent detailed
environment structures. In addition, unlike drones that fly in

1B. Yang, J. Cheng, B. Xue, and J. Jiao are with the Hong Kong
University of Science and Technology, Hong Kong SAR, China.
{byangar,jchengai,bxueaa,jjiao}@connect.ust.hk
(Corresponding author: Jianhao Jiao).

2J. Jiao is also with the Department of Computer Science, University
College London, Gower Street, WC1E 6BT, London, UK.

3M. Liu is with the Hong Kong University of Science and Tech-
nology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China.
eelium@hkust-gz.edu.cn

30 m

Quadrupedal

Wheeled

Scene Evaluation: 32 ms

Path Planning: 38 ms

Support Active 

Height Adaptation

Start

End

Fig. 1. We present a highly efficient and extensible global navigation frame-
work that generates smooth 3D trajectories in complex multi-layer scenarios.
It adopts a novel scene representation which enables rapid scene evaluation
and further alleviates the burden of path searching. The framework applies to
a wide range of ground robots including wheeled or quadrupedal robots and
supports active height adaptation of the platform to avoid overhangs.

3D space, voxels might not be the optimal choice for ground
robots that are more concerned about terrain conditions.

Elevation maps [5], [6] are widely adopted in navigating
ground robots on complex uneven terrains. Compared with
voxel-based representations, elevation maps store continuous
ground height values in 2D grids to represent the terrain sur-
face, which balances the mapping efficiency and the capability
to represent detailed ground conditions. However, traditional
elevation maps fail to identify overhangs or multi-layer struc-
tures, restricting their scope of application. Triebel et al. [7]
extend elevation maps by storing multi-level surfaces into grid-
wise lists, which brings difficulties in scene evaluation. Miki
et al. [8] adopt exclusion areas to reject overhangs and apply
overlap clearance to update the ground levels in multi-layer
structures, restricting it to only represent a single local terrain
surface and the method is unsuitable for large-scale scenarios.

We present a global navigation framework for ground robots
in complex 3D scenarios with the following aspects contribut-
ing to its high efficiency. First, we propose a novel scene
representation approach based on a tomographic understanding
of the point cloud. It encodes the geometric structure into
multiple tomogram slices containing the ground and ceiling
elevations. Our approach maintains the mapping simplicity
and terrain representation capability of elevation maps while
extending their scope to large-scale multi-layer scenarios. In
addition, our scene representation is compatible with a wide
range of mapping, scene evaluation, and path planning meth-
ods on grid maps, making our framework highly extensible to

ar
X

iv
:2

40
3.

07
63

1v
1 

 [
cs

.R
O

] 
 1

2 
M

ar
 2

02
4

https://github.com/byangw/PCT_planner


2

further enhancements. Second, a kernel-based scene evaluation
method is designed for rapid traversability estimation on
tomograms. It’s aware of the navigation hazards from both
ground and ceiling conditions considering the locomotion and
height adjustment capabilities of the robot. Both the tomogram
construction and the scene evaluation process are accelerated
through parallel computation. Third, we reduce the burden of
path planning by searching through multiple 2.5D tomogram
slices, achieving higher efficiency than directly planning in 3D
spaces. Our main contributions include:

• We propose a novel tomographic scene representation to
understand 3D environments, extending elevation maps to
multi-layer scenarios while maintaining their advantages
in mapping efficiency and representation capabilities.

• We design a GPU-based tomographic map construction
and scene evaluation method that reduces the computation
time by 3 orders of magnitude while considering the
robot’s locomotion and height adjustment capabilities.

• We develop a trajectory generation approach that effi-
ciently returns 3D trajectories with velocity information
by searching and optimizing paths on tomogram slices,
improving the path planning speed by 3 times.

• We integrate these modules to present a highly efficient
navigation framework that improves the navigation speed
by 2 orders of magnitude and successfully navigates a
quadrupedal robot in real-world scenarios.

II. RELATED WORK

In recent years, intensive research has been conducted
on navigating ground robots in complex environments. The
majority of these approaches can be classified into three
categories which respectively solve the navigation problems
on point clouds, meshes, and 2.5D or 3D grid maps.

A. Navigating on Point Clouds

The 3D point clouds are extensively adopted in robotic
applications to represent the environments [9]–[12]. Some
approaches directly solve navigation problems on point cloud
maps. Liu [1] proposes a GPU-accelerated tensor voting
framework to evaluate the environment’s geometric features
on the point cloud and calculate geodesic vectors on 3D
structures. It then adopts k-NN to construct a navigation graph
on the point cloud and uses Dijkstra for path planning. Krüsi
et al. [13] analyze the point distributions in local patches for
terrain assessment and directly generate optimized trajectories
on point clouds, enabling navigation on irregular terrains in
multi-level facilities. Waibel et al. [14] evaluate the terrain
roughness in off-road scenarios by applying a Convolutional-
LSTM network on point cloud patches to predict the IMU
responses. Although these methods are free of terrain surface
reconstruction, the unordered point cloud data increases the
complexity of scene understanding and trajectory generation,
which may lead to low navigation efficiency.

B. Navigating on Meshes

Meshes are widely used in computer graphics to model 3D
structures as polygon surfaces, which are also used in 3D

navigation problems. Ruetz et al. [15] develop OVPC mesh
which generates watertight 3D meshes from point clouds and
classifies the traversable spaces by calculating the direction
of surface normal vectors, enabling path planning under over-
hangs. Brandão et al. [16] propose GaitMesh for navigating
quadrupedal robots in large-scale multi-floor structures. A
distance field is built from voxelized polygons considering the
properties of different gait controllers and a navigation mesh
is then reconstructed for path searching using A* [17]. Pütz et
al. [18] plan paths on triangular meshes with arbitrary shapes
in outdoor environments. It measures multiple geometric at-
tributes of the mesh to generate the layered mesh map and
adopts Fast Marching Method (FMM) to compute the travel
costs through wavefront propagation. However, these methods
still usually require a long computation time to generate and
evaluate the navigation mesh in large-scale scenarios.

C. Navigating on Grid Maps

Grid maps have high compatibility with a wide range of
both traditional and learning-based approaches for mapping
[19]–[22], scene evaluation [23]–[26], and path planning [27]–
[30]. For example, elevation maps [5], [6] are 2.5D grid maps
that represent terrain structures with continuous height values
and are successfully applied to solve navigation problems
on complex terrains in [27], [29]. Nevertheless, traditional
elevation maps are unsuitable for scenarios with overhanging
objects or multi-floor structures. Miki et al. [8] use ramp
parameters to exclude the ceiling points and update the local
map with overlap clearance when moving through multiple
floors. Meng et al. [31] introduce a ceiling layer and two
ground elevations to capture the overhanging objects, ground
obstacles, and terrain conditions, which enables traveling in
complex off-road environments. However, these approaches
are still unsuitable for global navigation in multi-layer envi-
ronments. Triebel et al. [7] record the height and thickness of
various surface patches into the list of each grid to represent
multi-layers scenarios, which may bring difficulties for the
map processing stage to evaluate the scene from lists.

Some approaches represent the environment using 3D grids.
Frey et al. [32] adopt a neural network for traversability esti-
mation on occupancy voxels and plan paths in 3D structures
with ceilings, while the voxels only provide a rough view
of the terrain conditions. Wang et al. [2] extract traversable
regions from the point cloud using a ”Valid Ground Filter”.
It further obtains the travel costs by constructing Euclidean
Signed Distance Field (ESDF) and performing local plane
fitting. The trajectories are directly planned and optimized on
dense voxels, which may increase the computational burden.

This paper proposes a navigation framework for ground
robots in complex 3D environments using a tomographic
scene representation based on 2.5D grid maps. Compared
with existing extensions of elevation maps [7], [8], [31], our
approach adapts to large-scale multi-layer scenarios while
maintaining representation simplicity. Rather than directly
solving the navigation problems on 3D representations, our
approach achieves higher efficiency in map construction, scene
evaluation, and trajectory generation than [1], [2], [18].



3

III. METHODOLOGY

This section introduces the concept of point cloud tomog-
raphy and the approach to constructing the tomogram slices.
Then it illustrates how we achieve efficient scene understand-
ing and trajectory generation using this new representation.

A. Tomogram Construction

We define the “tomogram slices” {Sk | k ∈ [0, N ]} which
are multi-channel grid maps with the resolution being rg . Each
slice Sk = {eGk , eCk , cTk } contains a ground eGk = {eGi,j,k}
and a ceiling eCk = {eCi,j,k} elevation layer that respectively
encodes the terrain conditions and the overhanging structures,
as well as a corresponding travel cost map cTk = {cTi,j,k},
where e, c are the elevation and cost values of each grid, i, j are
the row and column indices, k is the slice index. To construct
the tomogram, we analyze the point cloud from a series of
cross-sections viewed from the relevant horizontal planes (Fig.
2). The planes are equidistantly stacked with the separation
being ds. The first plane is placed above the lowest point in
the point cloud by ds and the number of planes N is selected
to ensure that the last plane is above the highest point.

Each plane splits the point cloud into the “lower” and the
“upper” group containing the points below and above the
plane. As shown in Algorithm 1 (line 1 to 6), to construct the
ground layer eGk of the k-th slice, we vertically project each
point in the “lower group” upwards to the plane and obtain its
projection depth by calculating the height difference between
the point and the plane. The projected points are rasterized to
obtain a grid map. For each grid, the ground elevation eGi,j,k is
the plane height minus the minimum projection depth among
all the points inside. The ceiling eCk is obtained similarly by
projecting the “upper group” downwards and eCi,j,k is the plane
height plus the minimum projection depth. We set eGi,j,k or
eCi,j,k to be invalid if no point is projected into the grid. In this
way, these planes generate pairs of ground and ceiling layers
for the respective tomogram slices, while the travel cost maps
cTk are further obtained in Section III-B.

We note that in an indoor scenario, the building floors and
our slices are not necessarily aligned, as a single floor may also
contain various height layers. In addition, our approach applies
to more complicated structures such as spiral overpasses or
caves with intricate passages. To ensure complete coverage of
the valid planning search space, we choose ds ≤ dmin, where
dmin is the minimum ground-ceiling interval for the robot
to move through. Therefore, all the places with sufficiently
large intervals would be split by at least one plane. Then the
traversable places will be recognized by evaluating the relevant
ground and ceiling elevations in Section III-B.

B. Traversability Estimation

Next, we estimate the scene traversability and calculate the
grid-wise travel costs by analyzing the ground and ceiling
layers in the constructed tomogram (Algorithm 1 line 7, 8).
Compared with existing scene evaluation methods using single
terrain elevations, our approach is also aware of the overhang-
ing hazards and supports active body height adjustment of

Plane 1

1 1 1 1 1 1
1

1
1

1 1

1 1 1 1 1 1

: Traversable in Slice 11 : Untraversable in Slice 11

(a)

: Ceiling Layer

: Ground Layer

Slice 1:

Gateway

Plane 2

Plane 1

1 1 1 1 1 1
1

1
2

2
2

1 1 1 1 1 1

2 2 2
2 2 2

(b)

ds

Slice 2:

: Unique grid candidates in Slice 2 w.r.t. Slice 12

Plane 1

Plane 2

Plane 3

1 1 1 1 1 1
1

1 1 1 1 1 1

3
3

3 3 3

3 3

3
3

3
3

(c)

ds

ds

Slice 3:

1

3 : All the traversable grids in Slice 2 are also contained in Slice 3

Fig. 2. We construct tomogram slices by projecting the point cloud onto a
series of equidistant horizontal planes. Each slice contains a ceiling (orange)
and a ground (blue) layer. The squares present the grid traversability (green:
traversable, red: untraversable) considering the ground conditions and the
ceiling height. As all the traversable grids in slice 2 are contained in the
union of slices 1 and 3, slice 2 can be omitted as done in Section III-C.
The red-circled grids are the “gateways” defined in Section III-D that connect
slice 1 to the upper slices for searching upwards, as these grids share the
same spatial position but the cost in the upper slice is lower and reflects the
real traversability at that position. By using the gateways, our planner travels
through multiple slices to search on the slope and under the overhangs, thus
enabling navigation in multi-layer structures.

the robot. To achieve this, we calculate the height difference
between each pair of ground and ceiling layers to get the
interval distance dI = eC − eG. Suppose the robot’s body
height is adjustable between dmin and a normal operation
height dref , a grid is considered untraversable if dI < dmin or
will be assigned a penalty for the additional height adjustment
effort if dI ∈ [dmin, dref ]. For instance, we use the following
interval cost map cI for our quadrupedal robot as lowering the
body height leads to more energy consumption while walking,
where cB is the cost for untraversable barriers, αd is a scaling
factor, and each element cI is obtained as follows:

cI =

{
cB if dI < dmin

max
(
0, αd(dref − dI)

)
otherwise

. (1)



4

Algorithm 1 Point Cloud Tomography
Input: global point cloud map P = {pu|pu = [xu, yu, zu]

T }
Output: tomogram slices S = {Sk|Sk = (eGk , e

C
k , c

T
k )}

1: Minimum height of points zmin = min {zu}
2: for each point pu = [xu, yu, zu]

T do
3: Grid index i, j = rasterize(xu, yu)
4: for slice index k = 0, 1, . . . , N do
5: eGi,j,k = max (zu, e

G
i,j,k) if zu ≥ zmin + kds

6: eCi,j,k = min (zu, e
C
i,j,k) if zu < zmin + kds

7: cinitk = travEstm(eGk , e
C
k ) (Eq. 1 to 5)

8: cTk = inflation(cinitk ) (Eq. 6)
9: for each slice Sk = (eGk , e

C
k , c

T
k ) in S = {Sk} do

10: Find unique grids Uk = {unique(eGk , cTk )} (Eq. 8, 9)
11: if size(Uk) = 0, remove Sk from S

12: return unique tomogram slices S

By integrating cI into the cost map, our planner generates cost-
optimal 3D trajectories in Section III-D and III-E considering
the overhangs even though the robot’s motion for height ad-
justment is decomposed from planning on the ground surfaces.

Next, we analyze the ground layers to obtain the cost maps
of terrain conditions cG. Compared with [2], our approach also
identifies traversable steps and stairs to navigate legged robots.
For each grid, we obtain the gradients [gx, gy]T of the ground
elevation eG in x, y directions through the finite-difference
method and get the following magnitudes:

mxy = max(|gx|, |gy|), mgrad =
√
(gx)2 + (gy)2, (2)

and we have mxy ≤ mgrad. Three criteria with thresholds
θb, θs, θp are applied to measure the terrain conditions. The
grid is considered the boundary of a barrier if mxy > θb or a
traversable gentle surface if mgrad < θs, and the cost element:

cG =

cB if mxy > θb

αs

(
mgrad

θs

)2

if mgrad < θs
, (3)

where αs is a scaling factor. Otherwise, the grid belongs to
an edge that might be untraversable for wheeled robots (set
cG = cB) but can still be stepped across by legged robots. We
further estimate if the surrounding grids are safe to step on
by calculating the percentage ps of neighboring grids with
mgrad < θs within a local patch. The grid is considered
traversable if ps > θp and the cost is formulated as:

cG =

αb

(
mxy

θb

)2

if ps > θp

cB otherwise
. (4)

As shown in Fig. 3 (b), the grids near the center of the
spiral stairs are untraversable as the surfaces are too narrow.
The initial cost map is the clipped sum of cI and cG:

cinit = min(cB , cI + cG). (5)

Finally, we apply an inflation kernel (Fig. 3 (a)) on cinit

to expand the untraversable regions by dinf ≥ rc considering
the robot’s collision radius rc and create a safe margin within
dsm for smooth cost gradients and safe navigation behaviors.

Inflation
dinf = 0.2

Safe Margin
dsm = 0.4

(a) (b) (c)

Kernel 
Center

1.0

0.8

0.6

0.4

0.2

0.0

50

40

30

20

10

0

Fig. 3. (a): Illustration of the inflation kernel when dinf = 0.2, dsm =
0.4 and rg = 0.1. (b): The traversability cost map before inflation, where
the untraversable grids are in orange and the traversable regions are in blue.
The regions near the spiral center are untraversable due to the insufficient
stair width. (c): The final travel cost map, where the untraversable regions
are inflated and the costs are gradually reduced within the safe margin after
applying the inflation kernel.

The weight K(m,n) of a kernel cell at (m,n) with resolution
rg is calculated based on the Euclidean distance dmn between
the kernel center and the cell:

K(m,n) = max

(
0, min

(
1− dmn − dinf

dsm − rg
, 1

))
. (6)

The final travel cost map cTk is obtained through the sliding
window method, where the kernel performs the Hadamard
product with the patches on cinitk and returns the maximum
value of each resulting matrix as the cost of the patch center.

C. Tomogram Simplification

During the tomogram construction, the planes are separated
by ds = dmin to guarantee complete coverage of the planning
space. However, such a small height increment brings quite
a limited expansion of the mapping region in the new layer,
resulting in low efficiency in path searching or map storage.
Therefore, the tomogram is further simplified (Algorithm 1
line 9 to 11) based on the following principle: Let Mk denote
the set containing all the traversable grids in slice Sk. If:

Mk ⊂ (Mk−1 ∪Mk+1), (7)

which means the search space of an intermediate slice Sk is
already included in the union of its previous and subsequent
slice, then Sk is redundant and can be omitted. If so, Sk+1

will become the new intermediate slice and we then check if
Mk+1 ⊂ (Mk−1 ∪ Mk+2). Otherwise, Sk will be preserved
and we continue to examine if Mk+1 ⊂ (Mk ∪ Mk+2). The
process is repeated until all the slices are checked.

The condition in Eq. 7 can be checked according to the
ground elevations and the travel costs. A traversable grid with
cTi,j,k < cB at at position (i, j, k) is considered “unique” if:

(eGi,j,k − eGi,j,k−1 > 0 or cTi,j,k < cTi,j,k−1) and (8)

(eGi,j,k+1 − eGi,j,k > 0 or cTi,j,k < cTi,j,k+1), (9)

where Eq. 8 indicates that the grid has a unique spatial position
or has the same position but a lower cost that reflects its real
traversability compared with the grid at (i, j, k−1). Similarly,
Eq. 9 checks the relationship with the grid in Sk+1. In this way,
we examine the uniqueness of all the grids in each slice and the
slices containing no unique grid will be omitted. For instance,
in Fig. 2 (b) the traversable grids of slice 2 on the slope (green



5

(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

(a4)

(b4)

(c4)

(a5)

(b5)

(c5)

(a6)

(b6)

(c6)

Fig. 4. (row a): The point cloud map (a1) of the spiral environment in [2] is used to construct our tomogram. The environment is then represented by five
2.5D tomogram slices (a2) to (a6) after simplification, where the gray layers are ceilings and the colored layers are ground elevations. (row b): The whole
planning space (visualized as a point cloud (b1), blue: traversable, orange: untraversable) can be obtained by integrating (b2) to (b6) which are 2.5D travel
cost maps with the related ground elevations in (a2) to (a6). Note that (b1) is only for visualization and we directly adopt (b2) to (b6) for trajectory generation
in Section III-D and III-E. (row c): The planner searches on multiple tomogram slices along the green arrows and generates the 3D trajectory. It can enter
the upper slices through the gateways in red and can also search downwards through the gateways in blue.

grids with a mark “2”) satisfy Eq. 8 and are considered as
candidates of unique grids w.r.t. slice 1. However, they violate
Eq. 9 as they have the same elevations and costs as the grids
in slice 3. Therefore, slice 2 can be omitted.

Fig. 4 shows the simplified tomogram (row a) of the spiral
scenario in [2] and the corresponding travel cost maps (row b).
The point cloud is initially projected onto 46 slices which are
then simplified to 5 slices (Fig. 4 (a2) to (a6)) using the above
procedures. Compared with storing travel costs into dense 3D
voxels as done in [2], our approach achieves higher efficiency
by only adopting 5 layers of 2.5D cost maps (Fig. 4 (b2)
to (b6)) to represent the whole planning space. The memory
usage of our tomogram has the potential to be further reduced
by adopting sparse representations or other data structures to
store the unique grids only. In this paper, we continue to use
multi-layer 2.5D grid maps to represent the environment for
the simplicity of the subsequent processing stages.

D. Path Planning through Slices
After obtaining the simplified travel cost maps, we modify

A* to search through tomogram slices and plan initial paths.
Rather than directly planning on dense voxels in [2], we sepa-
rately plans on the 2.5D maps and optimizes z-axis motions to
avoid overhangs, achieving higher efficiency. As the cost map
already contains the interval cost cI , our planner generates
optimal solutions considering the ground-ceiling intervals.

Given an initial and a goal position, the planner starts
searching on an arbitrary slice Sk that contains the initial
position. Each grid is considered a graph node that connects
to its eight neighbors on the same cost map. When a grid is
queried, we also check the two grids from the adjacent slices
Sk−1, Sk+1 at the same planimetric position (i, j). Taking
the grid above at (i, j, k + 1) as an example, if they share
the same ground elevation eGi,j,k = eGi,j,k+1, then they are
considered the same node in the 3D space with the node cost
cN = min(cTi,j,k, c

T
i,j,k+1). The cost for graph search between

two nodes is defined as cN of the target node plus their
Euclidean distance, where the connection breaks if cN = cB .
The heuristic cost is the diagonal distance from the queried
node to the goal. If cTi,j,k+1 < cTi,j,k, then this node is
considered as a “gateway” (e.g., red-circled grids in Fig. 2)
to travel from Sk to Sk+1 so that the planner can continue
to search on Sk+1. The same logic adapts to the grid below
at (i, j, k−1) when searching downwards, where the gateway
occurs if eGi,j,k−1 = eGi,j,k and cTi,j,k−1 < cTi,j,k. In this way, our
approach plan paths on different slices and connect the paths
at the gateways to generate a 3D result on the multi-layer
structure. Fig. 4 (row c) presents how our planner travels on
multiple slices along the green arrows. The planner travels to
the upper slices through the gateway grids in red and enters
the lower slices through the gateway grids in blue.



6

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Fig. 5. The simulation scenarios and the trajectories generated by our approach. The first row presents the 3D models of environments: factory (a1), building
(b1), forest (c1), and overpass (d1). The second row shows the point clouds of the corresponding scenarios and the third row presents the integrated travel cost
maps generated by our approach. Our approach provides feasible and smooth trajectories in these complex 3D scenarios with various structured or irregular
terrain features and overhanging objects.

E. Trajectory Optimization

The proposed scene representation is compatible with vari-
ous gradient-based trajectory optimization techniques. In this
paper, we represent the trajectory as M -piece 3-dimensional
polynomials. The i-th piece of the trajectory is defined by a
polynomial with a degree of N = 5:

qi(t) = σT
i β(t), ∀t ∈ [0, Ti] , (10)

where σ ∈ R(N+1)×m is the coefficient matrix and β =[
1, t, . . . , tN

]T
is the natural bias. The trajectory optimization

is formulated as a minimal control effort problem:

min
σ,T

Jc + wz||qz(t)− Zref (q(t)) ||2 + wTT (11a)

s.t . q1(0) = q̄0, qM (T ) = q̄f , (11b)

q
[3]
i (Ti) = q

[3]
i+1(0), i = {1, . . . ,M − 1}, (11c)

C(q(t)) ≥ Csafe, ∀t ∈ [0, T ], (11d)

G(q(t), . . . , q(2)(t)) ⪯ 0, ∀t ∈ [0, T ], (11e)
Hg (q(t)) ≤ qz(t) ≤ Hc (q(t)) , ∀t ∈ [0, T ], (11f)

where Jc is the jerk control effort to smooth the trajectory in
the 3D space following [33], [34], Zref (q(t)) = eG (q(t)) +
dref is the preferred operation height of the robot, C is the
travel cost generated in Section III-B, Csafe is the safety
margin, and G(·) are kinematic constraints on the maximum
value of velocity, acceleration, and the changing rate of
headings. For ground robots with adjustable heights, additional
maximum height constraints are imposed on the z-axis of the
trajectory, where Hg (q(t)) = eG (q(t))+dmin and Hc (q(t))
is the inflated ceiling elevation queried from the tomogram.

IV. EXPERIMENTS

A. Implementation Details

1) Evaluation scenarios: The navigation approaches are
evaluated in simulated and real-world scenarios with complex
3D structures. In simulation, the following environments are
prepared to analyze the navigation performance, where the
dimensions are presented in (length, width, height):

• Factory: An outdoor scenario with regular urban terrain
features and overhanging structures (Fig. 5 (a1)). The
scene dimension is (84× 68× 12)m.

• Building: An indoor scenario containing multiple floors
with stairs and slopes of different steepness (Fig. 5 (b1)).
The scene dimension is (22× 20× 16)m.

• Forest: A wilderness environment with a tunnel, irreg-
ular terrain, and thin obstacles (Fig. 5 (c1)). The scene
dimension is (40× 40× 7)m.

• Overpass: A large-scale spiral overpass with multiple
layers and a complex route (Fig. 5 (d1)). The scene
dimension is (155× 95× 30)m.

The resolution of scene representations is 0.2 in factory,
overpass and 0.1 in building, forest to capture the terrain
features. To validate the trajectories, we simulate a Pioneer
3-DX robot in CoppeliaSim [35] for factory, forest, and
overpass. In addition, to evaluate the trajectory generation
performance, we uniformly sample 50 goals that are 26.5m
away from the starting point at the map center in each of the
following scenarios:

• Plaza: An outdoor scenario with various urban structures
(Fig. 6 (a1)). The scene dimension is (56× 56× 5)m.

• Hills: A wilderness scenario with irregular obstacles and
rough terrain (Fig. 6 (b1)). Dimension: (60× 60× 3)m.



7

(a1)

(a2)

(b1)

(b2)

Fig. 6. The plaza (a1) scenario with multiple urban structures and the
hills (b1) scenario with irregular terrain and obstacles for the evaluation of
trajectory quality. (b1), (b2): example trajectories generated by our approach.

In real-world experiments, we scan the following environ-
ments with LiDARs and build the point cloud maps using
A-LOAM1 [36], where we manually remove the noise points
and dynamic objects for rational navigation behaviors:

• Stairs: A multi-layer scenario where the robot starts from
the ground floor and moves up the winding stairs (Fig.
9 (a1)). The scene is scanned by a Livox Mid-70. The
scene dimension is (14× 14× 7)m.

• Boxes: A sandbox where the robot moves through narrow
arches and reaches the upper platform from the stairs or
the slope (Fig. 9 (b1)). The scene is scanned by an RS-
Helios-32 onboard the robot. Dimension: (22×22×4)m.

We use a Jueying Mini [37] quadrupedal robot to validate the
trajectories generated by the proposed framework. The algo-
rithm parameters are set considering the motion capabilities of
robots. For the quadrupedal robot used in the experiments, the
parameter values in Table I are adopted for map construction
and traversability estimation. For wheeled robots, we can set
θp = 1.0 to disable planning over stairs or steps.

TABLE I
ALGORITHM PARAMETERS

Items Notations Values

Height Adaptation [ds, dmin, dref ] [0.50, 0.50, 0.65]
Thresholds [θb, θs, θp] [1.70, 0.36, 0.20]
Costs and Scaling Factors [cB , αd, αb, αs] [50, 20, 20, 15]

2) Baseline approaches: Four methods with the following
typical scene representations are implemented to compare
the navigation capabilities with our approach. The last three
methods which plan in multi-layer 3D structures are further
quantitatively evaluated to compare the navigation efficiency
in mapping, scene evaluation, and trajectory generation:

• Elevation maps: Yang’s method [29] is adopted to eval-
uate traditional elevation maps [8] on GPU and navigate
quadrupedal robots on complex terrains using A*.

• Points: Liu’s approach [1] is used to perform GPU-
accelerated tensor voting directly on point clouds for

1https://github.com/HKUST-Aerial-Robotics/A-LOAM

(a) (b)

Fig. 7. (a): Yang’s method [29] using traditional elevation maps [8] only
evaluates a single terrain layer at a time and fails to plan in stairs. (b):
Our approach extends elevation maps to represent 3D planning spaces and
generates trajectory from the place below the stairs to the platform above.

scene evaluation. The path search algorithm in the origi-
nal implementation is replaced by A* for better efficiency.

• Meshes: Pütz’s method [18] is adopted to evaluate the
attributes of meshes and generate the layered navigation
mesh map. The meshes are built from point clouds using
the Ball-Pivoting algorithm. Then we also use A* to find
paths on the mesh maps for comparison.

• Voxels: We use Wang’s method2 [2] which processes
the point clouds into ESDF maps. The initial paths are
obtained by searching on 3D grids using A* and then
optimized to generate smooth trajectories.

We evaluate the navigation efficiency by comparing the time
Tp for pre-processing the point cloud map to construct the
scene representations as well as the Size of constructed maps
that reflect the memory usage, the time Te for traversability
evaluation and obtaining the navigation cost maps, the time
Ts for searching the initial paths, the number of nodes Ns

that the graph traversal algorithm visits, the time To for
trajectory optimization, and the total time Tall to solve the
navigation problem. The operations on GPU are synchronized
for accurate measurement of the computation time. The time of
Wang’s method to build 3D occupancy grids is excluded from
Tp and Tall for fair comparison as its CPU implementation
is inefficient. For trajectory evaluation in plaza and hills,
we compare the average time for path searching Ts and
optimization To, the average trajectory length Lt and curvature
Ct, and the success rate St of finding feasible trajectories. All
the approaches are evaluated on a desktop with an Intel i9-
12900KF @ 3.2GHz CPU and NVIDIA RTX 3080 Ti GPU. In
addition, we deploy our approach on an NVIDIA Jetson AGX
Orin (MAXN mode) to further demonstrate the high efficiency
of our approach even on a mobile computation device.

TABLE II
SCENE EVALUATION AND TRAJECTORY GENERATION CAPABILITIES

Methods Planning in
3D Spaces

Body Height
Adaptation

Planning on
the Stairs

Motion
Capabilities
Awareness

Trajectory
with

Velocities

Yang’s [29] ✘ ✘ ✔ ✔ ✘
Liu’s [1] ✔ ✘ ✔ ✘ ✘
Pütz’s [18] ✔ ✘ ✘ ✔ ✘
Wang’s [2] ✔ ✔ ✘ ✔ ✔
Ours ✔ ✔ ✔ ✔ ✔

2https://github.com/ZJU-FAST-Lab/3D2M-planner



8

TABLE III
EVALUATION OF COMPUTATION AND MEMORY EFFICIENCY IN MAP CONSTRUCTION, SCENE EVALUATION, AND TRAJECTORY GENERATION

Scenarios Approaches Map Construction Scene Evaluation Trajectory Generation Overall

Tp[ms] ↓ Size[MB] ↓ Te[ms] ↓ Ts[ms] ↓ Ns ↓ To[ms] ↓ Tall[ms] ↓

Factory

Liu’s [1] − 12.31 178.28× 103 189.50 135, 290 − 178.75× 103

Pütz’s [18] 3.44× 103 28.84 13.36× 103 100.94 80,333 − 16.91× 103

Wang’s [2] 2.22× 103 34.27 24.54× 103 1.37× 103 3, 892, 807 953.46 29.08× 103

Ours (PC-CPU only) 630.76 4.57 785.68 25.66 133, 648 475.64 1.92× 103

Ours (PC) 2.39 4.57 2.41 25.66 133, 648 475.64 542.55
Ours (Orin) 20.06 4.57 12.53 75.56 133, 648 1.36× 103 1.56× 103

Building

Liu’s [1] − 7.40 116.47× 103 765.54 208, 973 − 117.51× 103

Pütz’s [18] 3.41× 103 17.10 11.36× 103 − − − −
Wang’s [2] 1.91× 103 28.16 11.53× 103 − − − −

Ours (PC-CPU only) 290.98 3.17 234.95 7.33 39,760 359.39 892.65
Ours (PC) 3.10 3.17 3.42 7.33 39,760 359.39 398.14

Ours (Orin) 23.05 3.17 17.69 17.89 39,760 989.66 1.11× 103

Forest

Liu’s [1] − 6.94 93.86× 103 66.24 29,234 − 94.18× 103

Pütz’s [18] 4.52× 103 17.94 12.88× 103 68.27 57, 162 − 17.47× 103

Wang’s [2] 1.79× 103 44.80 24.67× 103 917.61 3, 014, 581 42.95 27.42× 103

Ours (PC-CPU only) 293.43 6.40 460.51 19.56 85, 450 65.43 838.93
Ours (PC) 1.42 6.40 3.02 19.56 85, 450 65.43 109.99

Ours (Orin) 12.50 6.40 19.88 60.50 85, 450 175.75 317.40

Overpass

Liu’s [1] − 16.35 1.19× 106 820.49 596, 386 − 1.19× 106

Pütz’s [18] 18.30× 103 67.73 45.21× 103 840.81 399, 943 − 64.35× 103

Wang’s [2] 4.56× 103 220.88 97.64× 103 19.81× 103 55, 489, 651 5.24× 103 127.26× 103

Ours (PC-CPU only) 1.49× 103 26.65 3.30× 103 37.82 224,651 2.91× 103 7.74× 103

Ours (PC) 18.11 26.65 14.35 37.82 224,651 2.91× 103 3.17× 103

Ours (Orin) 123.55 26.65 81.78 92.59 224,651 7.55× 103 8.19× 103

Stairs

Liu’s [1] − 1.34 10.46× 103 67.68 43, 302 − 10.75× 103

Pütz’s [18] 3.19× 103 3.69 3.36× 103 − − − −
Wang’s [2] 346.40 5.49 2.58× 103 − − − −

Ours (PC-CPU only) 55.41 0.47 58.10 2.06 12,426 54.29 169.86
Ours (PC) 0.42 0.47 0.20 2.06 12,426 54.29 61.23

Ours (Orin) 3.23 0.47 1.36 6.03 12,426 132.19 161.50

Boxes

Liu’s [1] − 2.75 22.56× 103 19.00 5, 935 − 22.82× 103

Pütz’s [18] 1.62× 103 5.10 1.61× 103 3.91 2,875 − 3.23× 103

Wang’s [2] 935.63 7.74 3.55× 103 90.94 245, 412 16.00 4.60× 103

Ours (PC-CPU only) 107.55 1.16 18.70 1.64 7, 794 14.62 142.51
Ours (PC) 0.37 1.16 0.95 1.64 7, 794 14.62 24.34

Ours (Orin) 2.93 1.16 5.52 4.53 7, 794 41.65 75.72

Evaluation results of the navigation approaches in simulated (row 1 to 4) and real-world (row 5, 6) scenarios. Tp: point cloud pre-processing time, Size:
memory usage of the constructed scene representation, Te: traversability estimation time, Ts: path searching time, Ns: visited graph nodes for planning,
To: trajectory optimization time, Tall: total navigation time.

B. Navigation Capabilities

The first four items in Table II compare the scene evaluation
capabilities of different methods. Although Yang’s method
[29] plans with motion capabilities awareness of robots on
stairs and other complex terrains, it fails to plan in multi-layer
3D spaces as the traditional elevation map [8] only recognizes
a single terrain layer at a time (Fig. 7). Other approaches can
navigate in 3D multi-layer scenarios. However, only Wang’s
and our approach can adjust the robot’s body height along
the z-axis for active adaptation to narrow environments. Both
Pütz’s and Wang’s methods are unsuitable for planning on the
stairs for legged robots, for they consider the vertical surfaces
of the steps as untraversable. Although Liu’s approach plans on
the stairs, it fails to capture the motion capabilities of different
robots and may generate infeasible paths. The last item in
Table II compares the trajectory generation capability. Only
Wang’s and our approach generate trajectories with velocity
information, as it’s normally easier to optimize paths on gird
maps. While Pütz et al. [18] also present the Continuous
Vector-field planner (CVP) to generate smooth paths, it does

not plan the robot’s velocities. Our approach provides smooth
trajectories considering the robot’s capabilities of locomotion
and body height adjustment in complex environments, present-
ing strong potential in a wide range of navigation applications.

C. Simulation Results
The first four rows of Table III present the evaluation results

in simulation scenarios. For building, both Pütz’s and Wang’s
methods can not recognize the traversable stairs, thus resulting
in the failure of planning. As our map construction and scene
evaluation steps are able to be accelerated through parallel
computation, the processing speed is significantly improved
by 2 to 3 orders of magnitude with less Tp and Te. The
constructed maps also maintain high efficiency in memory
usage with smaller Sizes using our proposed representation
approach. Although Liu’s approach also runs on GPU, the ten-
sor voting process is still quite time-consuming. Also, Wang’s
method takes a long time to perform plane fitting, resulting in
large Te. In addition, our approach reduces the burden of path
searching with less time Ts, which benefits the tasks with re-
planning requirements. Wang’s method directly plans on dense



9

TABLE IV
EVALUATION OF TRAJECTORY GENERATION PERFORMANCE IN RUN-TIME AND QUALITY

Scenarios Approaches Ts[ms] ↓ To[ms] ↓ Lt[m] ↓ Ct[m−1] ↓ St ↑

Plaza
Liu’s [1] 358.17 ± 25.78 − 28.91 ± 0.71 0.353 ± 0.645 0.12

Pütz’s [18] 44.16 ± 4.43 − 30.69 ± 1.53 0.164 ± 0.018 0.92
Wang’s [2] 1.19× 103 ± 335.25 33.83 ± 19.19 47.13 ± 9.59 0.037 ± 0.010 0.94
Ours (PC) 13.93 ± 3.93 52.57 ± 25.99 28.32 ± 1.55 0.018 ± 0.007 1.00

Hills
Liu’s [1] 219.31 ± 9.19 − 29.65 ± 0.57 0.149 ± 0.015 0.28

Pütz’s [18] 62.42 ± 3.36 − 28.79 ± 0.30 0.130 ± 0.031 0.80
Wang’s [2] 1.05× 103 ± 528.27 33.58 ± 30.33 40.53 ± 13.73 0.011 ± 0.010 0.86
Ours (PC) 14.23 ± 4.39 32.89 ± 22.87 27.79 ± 0.44 0.011 ± 0.006 0.92

Trajectory evaluation results in simulated plaza and hills scenarios (mean and standard deviation). Ts: average path searching time, To: average trajectory
optimization time, Lt: average trajectory length, Ct: average trajectory curvature, St: success rate of finding feasible trajectories in 50 attempts.

3D voxels, which introduces unnecessarily large numbers of
node visits. Both Liu’s and Pütz’s approaches have small Ns,
as they might generate navigation graphs sparser than grid
maps by evaluating points or meshes. However, they take
a longer time to query the neighboring nodes and finish a
single visit compared with searching on grid maps. The total
time Tall of our approach which already includes the time
for data exchange between computation devices is still small.
Our approach generates trajectories in a short time even on a
mobile device. The computation time is still rational in large-
scale scenarios like overpass.

Fig. 5 presents the 3D models (row 1), the point clouds (row
2), and the traversability estimation results of our approach
(row 3) together with our generated trajectories. Our approach
provides feasible, smooth, and executable trajectories in both
indoor and outdoor multi-layer environments with structured
or irregular terrains. The trajectories in factory, forest, and
overpass are successfully validated on the Pioneer 3-DX robot
in physical simulation (please see the attached video for more
detail on the simulation results).

Fig. 8 compares the planning results of different approaches
in factory (a) and forest (b). Without the awareness of the
robot’s motion capabilities, Liu’s approach (blue) generates
infeasible paths. It fails to consider the body size of the robot
in factory and the path collides with the pillars in forest as it
shows a strong preference for following the geodesic direction.
Pütz’s method (yellow) plans feasible paths without providing
the velocity information. Both Wang’s (red) and our approach
(green) generate smooth trajectories. However, Wang’s method
may fail to capture detailed terrain structures using voxels and
provide sub-optimal solutions. For example, in factory, the red
trajectory takes an early turn and flies down the first slope from
the side (bottom left corner of Fig. 8 (a)).

Table IV evaluates the trajectory generation performance.
Without the awareness of robots’ motion capabilities, Liu’s
method [1] frequently moves through untraversable obstacles
or narrow passages. Wang’s method [2] using rough voxels for
scene evaluation fails to capture detailed terrain information
and plans with unnecessary detours, resulting in long trajectory
length. Our approach provides high-quality smooth trajectories
in a short time with lower trajectory length Lt and curvature
Ct on average in both scenarios. By analyzing continuous
ground elevations, our approach better understands the terrain
conditions and achieves higher success rates.

(a)

(b)

Liu’s
Pütz’s
Wang’s
Ours

Liu’s
Pütz’s
Wang’s
Ours

Fig. 8. Planning results of the evaluated approaches in factory (a) and
forest (b). Green: our approach, blue: Liu’s method, yellow: Pütz’s method,
red: Wang’s method. Liu’s method provides infeasible solutions as it fails
to consider the robot’s shape and motion capabilities. Pütz’s method provides
paths without velocity information. Wang’s trajectory flies down from the side
of the slope in the bottom left corner of (a), resulting in irrational behavior.

D. Real-world Performance

The last two rows of Table III show the computation time
of the evaluated approaches in real-world experiments. Our
approach still generates feasible trajectories on the point cloud
maps and outperforms the baseline approaches using other
scene representations in efficiency. It performs scene evalua-
tion and initial path planning in only several milliseconds and
the total navigation speed is more than 2 orders of magnitude
faster than existing approaches.

Fig. 9 shows the photos (row 1), point cloud maps with the
generated trajectories (row 2), and the estimated travel costs
(row 3) of the real-world scenarios. In stairs, our approach
successfully navigates the quadrupedal robot to reach the
second floor through the winding stairs in this multi-layer
structure. In addition, by capturing the terrain features and
rationally designing the travel cost functions, our framework
navigates the robot with locomotion capabilities awareness.
The robot can automatically adjust the body height to walk
through the narrow arches in boxes. Also, it chooses to move



10

(a1) (b1)

(a2) (b2)

(a3) (b3)

Fig. 9. The real-world experiment scenarios and the navigation results.
The first row shows the photos of environments: stairs (a1) and boxes (b1).
Row 2 presents the corresponding point cloud maps and row 3 shows the
integrated travel cost maps generated by our approach. Our quadrupedal
robot successfully finished these navigation tasks in real-world experiments
following the generated trajectories. In boxes, the robot prefers to move up
to the platform through the gentle slope as the slope has lower travel costs
and is safer than the steep stairs.

up from the slope rather than the stairs beside to reach the
target as walking on the steep stairs is more risky and the
travel costs on the stairs are higher. More details of the real-
world experiments are also presented in our video.

V. DISCUSSION

In addition to its strong performance in the experiments, the
proposed navigation framework is also extensible to be applied
in more complex navigation tasks. Our scene representation
is compatible with a wide range of traditional or learning-
based methods on elevation maps to further enhance the
performance of map construction, scene evaluation, and path
planning. Semantic information could also be concatenated
to the tomogram slices to provide additional environment
features beyond the geometric structures for more robust
navigation behavior. By understanding the 3D environment
as 2.5D layers, our framework achieves high simplicity and
computation efficiency, which also presents its strong potential
for online navigation and exploration tasks.

There are some limitations of the presented framework. The
current approach requires a relatively dense and high-quality
point cloud map of the scene. It may generate sub-optimal
trajectories or fail to find a solution if the point cloud is
too sparse or contains too much noise and dynamic objects.
Although existing methods can link faraway nodes across the
missing areas for path planning [1], [18] or fill in the blanks
with neighboring elevations [8] for dense mapping, the lack of
concrete terrain information in unobserved regions may lead to
dangers in downstream tasks [22]. Learning-based approaches
could be introduced to recover the structure of noisy or

occluded regions better with the awareness of reconstruction
uncertainty (as done in [22]) and remove dynamic points to
reduce human burden in pre-processing point clouds.

VI. CONCLUSION

This paper presented a highly efficient and extensible global
navigation framework for ground robots in complex multi-
layer structures. We introduced a novel scene representation
to analyze the point cloud map from a tomographic view. The
resulting tomogram slices extend traditional elevation maps
to represent multi-layer 3D structures while maintaining their
simplicity in mapping and processing. Both terrain conditions
and spatial structures are evaluated with the awareness of the
robot’s locomotion and height adjustment capabilities. The
map construction and the scene evaluation stages can be accel-
erated through parallel computation to reduce the processing
time. In addition, our scene representation approach reduces
the burden of path search. Our trajectory generation module
efficiently provides cost-optimal 3D trajectories and supports
active body height adaptation to the narrow environments. The
proposed framework is evaluated in both simulated and real-
world experiments, demonstrating its highly efficient naviga-
tion performance in various complicated 3D environments.

ACKNOWLEDGMENT

We would like to thank Ren Xin, Peng Yun, and Xiangcheng
Hu for their valuable suggestions.

REFERENCES

[1] M. Liu, “Robotic online path planning on point cloud,” IEEE Transac-
tions on Cybernetics, vol. 46, no. 5, pp. 1217–1228, 2016.

[2] J. Wang, L. Xu, H. Fu, Z. Meng, C. Xu, Y. Cao, X. Lyu, and F. Gao,
“Towards efficient trajectory generation for ground robots beyond 2d
environment,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7858–7864, 2023.

[3] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and effi-
cient quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[4] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transactions
on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[5] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart,
“Robot-centric elevation mapping with uncertainty estimates,” in Inter-
national Conference on Climbing and Walking Robots (CLAWAR), 2014.

[6] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping
for mobile robots with uncertain localization,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3019–3026, 2018.

[7] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for out-
door terrain mapping and loop closing,” in 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2276–2282, 2006.

[8] T. Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, and
M. Hutter, “Elevation mapping for locomotion and navigation using
gpu,” in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2273–2280, 2022.

[9] J. Jiao, F. Chen, H. Wei, J. Wu, and M. Liu, “Lce-calib: Automatic
lidar-frame/event camera extrinsic calibration with a globally optimal
solution,” IEEE/ASME Transactions on Mechatronics, pp. 1–12, 2023.

[10] Y. Wu and J. Zhao, “A robust and precise lidar-inertial-gps odometry and
mapping method for large-scale environment,” IEEE/ASME Transactions
on Mechatronics, vol. 27, no. 6, pp. 5027–5036, 2022.

[11] K. Liu and M. Cao, “Dlc-slam: A robust lidar-slam system with
learning-based denoising and loop closure,” IEEE/ASME Transactions
on Mechatronics, pp. 1–9, 2023.

[12] P. Shi, Z. Zhu, S. Sun, X. Zhao, and M. Tan, “Invariant extended
kalman filtering for tightly coupled lidar-inertial odometry and map-
ping,” IEEE/ASME Transactions on Mechatronics, pp. 1–12, 2023.



11

[13] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point
clouds: Motion planning, trajectory optimization, and terrain assessment
in generic nonplanar environments,” Journal of Field Robotics, vol. 34,
no. 5, pp. 940–984, 2017.

[14] G. G. Waibel, T. Löw, M. Nass, D. Howard, T. Bandyopadhyay, and
P. V. K. Borges, “How rough is the path? terrain traversability estimation
for local and global path planning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 9, pp. 16462–16473, 2022.

[15] F. Ruetz, E. Hernández, M. Pfeiffer, H. Oleynikova, M. Cox, T. Lowe,
and P. Borges, “Ovpc mesh: 3d free-space representation for lo-
cal ground vehicle navigation,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 8648–8654, 2019.

[16] M. Brandão, O. B. Aladag, and I. Havoutis, “Gaitmesh: Controller-aware
navigation meshes for long-range legged locomotion planning in multi-
layered environments,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3596–3603, 2020.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[18] S. Pütz, T. Wiemann, M. K. Piening, and J. Hertzberg, “Continuous
shortest path vector field navigation on 3d triangular meshes for mo-
bile robots,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2256–2263, 2021.

[19] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206, 2013.

[20] D. Hoeller, N. Rudin, C. Choy, A. Anandkumar, and M. Hutter,
“Neural scene representation for locomotion on structured terrain,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 8667–8674, 2022.

[21] M. Stölzle, T. Miki, L. Gerdes, M. Azkarate, and M. Hutter, “Re-
constructing occluded elevation information in terrain maps with self-
supervised learning,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 1697–1704, 2022.

[22] B. Yang, Q. Zhang, R. Geng, L. Wang, and M. Liu, “Real-time neural
dense elevation mapping for urban terrain with uncertainty estimations,”
IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 696–703, 2023.

[23] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[24] B. Yang, J. Jiao, L. Wang, and M. Liu, “An online interactive approach
for crowd navigation of quadrupedal robots,” in 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 13556–
13562, 2022.

[25] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak,
“Coupling vision and proprioception for navigation of legged robots,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 17273–17283, 2022.

[26] J. Huang, B. Zhou, Z. Fan, Y. Zhu, Y. Jie, L. Li, and H. Cheng, “Fael:
Fast autonomous exploration for large-scale environments with a mobile
robot,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1667–
1674, 2023.

[27] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and
A. Giusti, “Path planning with local motion estimations,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2586–2593, 2020.

[28] L. Wellhausen and M. Hutter, “Rough terrain navigation for legged
robots using reachability planning and template learning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 6914–6921, 2021.

[29] B. Yang, L. Wellhausen, T. Miki, M. Liu, and M. Hutter, “Real-
time optimal navigation planning using learned motion costs,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
pp. 9283–9289, 2021.

[30] X. Cai, M. Everett, L. Sharma, P. R. Osteen, and J. P. How, “Proba-
bilistic traversability model for risk-aware motion planning in off-road
environments,” arXiv preprint arXiv:2210.00153, 2022.

[31] X. Meng, N. Hatch, A. Lambert, A. Li, N. Wagener, M. Schmittle,
J. Lee, W. Yuan, Z. Chen, S. Deng, G. Okopal, D. Fox, B. Boots, and
A. Shaban, “Terrainnet: Visual modeling of complex terrain for high-
speed, off-road navigation,” 2023.

[32] J. Frey, D. Hoeller, S. Khattak, and M. Hutter, “Locomotion policy
guided traversability learning using volumetric representations of com-
plex environments,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5722–5729, 2022.

[33] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[34] J. Cheng, Y. Chen, Q. Zhang, L. Gan, C. Liu, and M. Liu, “Real-time
trajectory planning for autonomous driving with gaussian process and
incremental refinement,” in 2022 International Conference on Robotics
and Automation (ICRA), pp. 8999–9005, IEEE, 2022.

[35] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly v-
rep): a versatile and scalable robot simulation framework,” in Proc. of
The International Conference on Intelligent Robots and Systems (IROS),
2013. www.coppeliarobotics.com.

[36] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.,” in Robotics: Science and systems, vol. 2, pp. 1–9, Berkeley, CA,
2014.

[37] “Jueying Mini.” https://www.deeprobotics.cn/en/products jy 301.html.
Accessed: 2021-08-30.

Bowen Yang received the B.Eng. degree in the
Hong Kong Polytechnic University, HKSAR, China,
in 2019. He is currently pursuing the Ph.D. degree
in the Department of Electronic and Computer En-
gineering, the Hong Kong University of Science and
Technology, HKSAR, China, supervised by Prof.
Ming Liu. His research mainly focuses on scene
understanding and path planning for autonomous
robots.

Jie Cheng received the B.S. degree from Huazhong
University of Science and Technology, Wuhan,
China, in 2019. He is currently pursuing the Ph.D.
degree in the Department of Electronic and Com-
puter Engineering, the Hong Kong University of
Science and Technology, HKSAR, China, supervised
by Prof. Ming Liu. His research mainly focuses on
motion planning and motion forecasting for robots
and autonomous vehicles.

Bohuan Xue received the B.Eng. degree in com-
puter science and technology from College of Mo-
bile Telecommunications, Chongqing University of
Posts and and Telecom, Chongqing, China, in 2018.
He is currently working toward the Ph.D. degree
in electrical engineering with the Department of
Computer Science and Engineering, the Hong Kong
University of Science and Technology, HKSAR,
China. His research interests include SLAM, com-
puter vision, and 3D reconstruction.

Jianhao Jiao received the B.Eng. degree in instru-
ment science from Zhejiang University, Hangzhou,
China, in 2017, and the Ph.D. from the Department
of Electronic and Computer Engineering, the Hong
Kong University of Science and Technology, HK-
SAR, China, in 2021, supervised by Prof. Ming Liu.
He is now a research associate at the same univer-
sity. His research interests include state estimation,
SLAM, dense mapping, sensor fusion, and computer
vision.

Ming Liu received the Ph.D. degree from the De-
partment of Mechanical and Process Engineering,
ETH Zurich, Switzerland, in 2013, supervised by
Prof. Roland Siegwart. He is currently with the
Robotics and Autonomous Systsms, The Hong Kong
University of Science and Technology (Guangzhou),
the director of Intelligent Autonomous Driving Cen-
ter, as an Associate Professor. Prof. Liu is currently
an Associate Editor for IEEE Robotics and Au-
tomation Letters, IET Cyber-Systems and Robotics,
International Journal of Robotics and Automation.

His research interests include dynamic environment modeling, deep-learning
for robotics, 3D mapping, machine learning, and visual control.

https://www.deeprobotics.cn/en/products_jy_301.html

	Introduction
	Related Work
	Navigating on Point Clouds
	Navigating on Meshes
	Navigating on Grid Maps

	Methodology
	Tomogram Construction
	Traversability Estimation
	Tomogram Simplification
	Path Planning through Slices
	Trajectory Optimization

	Experiments
	Implementation Details
	Evaluation scenarios
	Baseline approaches

	Navigation Capabilities
	Simulation Results
	Real-world Performance

	Discussion
	Conclusion
	References
	Biographies
	Bowen Yang
	Jie Cheng
	Bohuan Xue
	Jianhao Jiao
	Ming Liu


